## **Rolling-Element Bearings** Calculation and selection using SKF Bearing Catalogue











## **Linnæus University** Sweden

Samir Khoshaba

## Principle of the Rolling-Element Bearings is very old.



This picture shows the principle of a Rolling-Element Bearing of today.

This picture shows how the people in ancient Mesopotamia moved huge stones.



With the rollers used by the Assyrians to move massive stones in 1100 BC . . .





#### Modern Rolling Bearings





- Outer ring
- Inner ring
- Rolling Elements
  - Balls & Cage
  - Rollers & Cage

## Industrial revolution

- Development of modern Bearing
- Better material and better manufacturing methods resulted in better bearings
- Big need for rolling bearings
- Sewing machines' and bicycle manufactures the biggest bearing consumers



The diagram shows statistics of patents applications for bicycle bearings in England

## This picture shows a drawing from a French patent of 1802.





Tapered roller Thrust bearing (koniskt axialrullager)





#### Thrust ball bearing (axialkullager)

# Sven Wingquist and the Self-aligning ball bearing

- Maintenance engineer at Gamelstadensfabriker
- Frequent failures in deep groove ball bearings
- Reason: misaligning of the shafts of belt transmissions
- Invented a new bearing to accept missaligning



Drawing of the Swedish patent number 25406 from 1907 by Sven Wingquist. Self-aligning ball bearing (Sfäriskt kullager)





## The Spherical roller bearing

- Development period: from 1919 to 1935
- Invented by Arvid Palmgren
- SKF's research budget was bigger the research budget of whole Royal Technical Institute in Stockholm
- SKF calculations theory become world standard in 1947. (developed by Palmgren and mathematic Prof. G. Lundberg from RTI)



ARVID PALMGREN







## Bearings are divided in two groups dependent on rolling elements. Ball Bearings & Roller Bearings











## Loads and bearing types

#### For two Cylinders



Maximum contact pressure

$$0,578 \cdot \sqrt[3]{\frac{F(\frac{1}{R_1} + \frac{1}{R_2})^2}{\Delta^2}}$$





SMÅ BELASTNINGAR KULLAGER

 $p_0 = 1$ 

Low load **Ball bearings** 



Middle sized loads; Ball or roller bearings





High load **Roller bearings** 

## Bearings are also divided in two groups dependent on load direction.



## Three groups of Rolling Element Bearing (Rolling Bearings)



## 1. Radial Ball Bearings

Deep grooveSelf-aligningAngular contactball bearingball bearingball bearing









2. Radial Roller Bearings

## Cylindrical Roller Bearing







& Spherical Roller Bearing



#### **Tapered Roller Bearing**





## Needle Roller Bearing







&



## Thrust ball bearing, Cylindrical roller thrust bearing & Spherical roller thrust bearing





**Rolling-Element Bearings** 





Selecting bearing size using the life equations (SKF p. 64-65)

## **Bearing Selection**



#### **Bearings are selected based on:**

Load

Speed

P

- Temperature
- Environment
- Life expectancy



1. Basic rating life (p. 64):

$$L_{10} = \left(\frac{C}{P}\right)^{p} \quad \text{or} \quad L_{10} = \frac{1000000}{60 \cdot n} \left(\frac{C}{P}\right)^{p}$$
$$L_{10h} = \frac{1000000}{60 \text{ n}} \left(\frac{C}{P}\right)^{p} \quad \text{Lundberg Palmgren Equation 1947}$$

 $L_{10} = \text{basic rating life (at 90\% reliability),} \\ \text{millions of revolutions} \\ L_{10h} = \text{basic rating life (at 90\% reliability),} \\ \text{operating hours} \\ p = \text{exponent of the life equation} \\ p = 3 \text{ for ball bearings} \\ p = 10/3 \text{ for roller bearings} \\ n = \text{rotational speed, rpm}$ 

#### 1. SKF rating life (p. 65):

$$\mathbf{L}_{nm} = \mathbf{a}_1 \cdot \mathbf{a}_{SKF} \left(\frac{\mathbf{C}}{\mathbf{P}}\right)^p$$

$$L_{nmh} = a_1 \cdot a_{SKF} \frac{1000000}{60 \cdot n} \left(\frac{C}{P}\right)^p$$

- $L_{nm} = SKF$  rating life (at 100-n% reliability), millions of revolutions
- $L_{nmh} = SKF$  rating life (at 100-n% reliability), operating hours
- p = exponent of the life equationp = 3 for ball bearingsp = 10/3 for roller bearingsn = rotational speed, rpm

 $a_1 =$  life adjustment factor for reliability (table 1, p. 65)

| Reliability | Failure<br>probability | SKF rating life                    | Factor    |
|-------------|------------------------|------------------------------------|-----------|
|             | n                      | L <sub>nm</sub>                    | a1        |
| ž           | z                      | million revolutions                | -         |
| 90          | 10                     | L <sub>10m</sub>                   | 1         |
| 95<br>96    | 5 4                    | L <sub>5m</sub><br>L <sub>4m</sub> | 0,64 0,55 |
| 97          | 3                      | L <sub>3m</sub>                    | 0,47      |
| 99          | 1                      | L <sub>2m</sub><br>L <sub>1m</sub> | 0,25      |

Toble 4

#### C = basic dynamic load rating, kN.

| Princi      | ipal<br>nsions |          | Basic le<br>dynami | oad ratings<br>ic static | Fatigue<br>load limit | Speed rati<br>Reference<br>speed | Limiting        | Mass         | Designations<br>Bearing capped on<br>both sides | one side   |
|-------------|----------------|----------|--------------------|--------------------------|-----------------------|----------------------------------|-----------------|--------------|-------------------------------------------------|------------|
| d           | D              | в        | с                  | Co                       | Pu                    | speed                            |                 |              |                                                 |            |
| mm          |                |          | kN                 | 6. (A.)                  | kN                    | r/min                            | ň               | kg           |                                                 |            |
| 45<br>cont. | 85<br>85       | 19<br>19 | 32,5<br>35,1       | 20.4<br>21.6             | 0,865<br>0,915        | 18 000<br>17 000                 | 10 000<br>8 500 | 0,43<br>0,43 | E2.6209-2Z<br>* 6209-2Z                         | * 6209-Z   |
|             | 85<br>85       | 19<br>23 | 35,1<br>33,2       | 21.6<br>21.6             | 0.915 0.915           |                                  | 5 000<br>5 000  | 0,43<br>0,51 | * 6209-2R51<br>62209-2R51                       | * 6209-R51 |



| Dimensions  |              | Abutment and fillet dimensions |                          |                        |                        | Calculation factors    |                        |           |                |          |
|-------------|--------------|--------------------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|-----------|----------------|----------|
| d           | d1<br>~      | D2                             | r <sub>1,2</sub><br>min. | d <sub>a</sub><br>min. | d <sub>a</sub><br>max. | D <sub>a</sub><br>max. | r <sub>a</sub><br>max. | ,q        | k <sub>r</sub> | fo       |
| mm          |              |                                | 1                        | mm                     | The last               | ni                     | nke                    | <b>MN</b> | -              | kN       |
| 45<br>cont. | 57.6<br>57,6 | 75,2<br>75,2                   | 1,1<br>1,1               | 52<br>52               | 57,5<br>57,5           | 78<br>78               | 1                      |           | 0,025          | 14<br>14 |
|             | 57,6<br>57,6 | 75,2                           | 1,1 1,1                  | 52<br>52               | 57,5<br>57,5           | 78<br>78               | 1                      |           | 0,025          | 14 14    |



P = equivalent dynamic bearing load, kN

 $\mathbf{P} = \mathbf{X}\mathbf{F}_{\mathbf{r}} + \mathbf{Y}\mathbf{F}_{\mathbf{a}}$ 



- $F_r$  = actual radial bearing load, N
- $F_a$  = actual axial bearing load, N
- X = radial load factor
- Y = axial load factor



## There are different equations to calculate the equivalent dynamic bearing load

#### Example: Self-aligning ball bearing (SKF p. 544)

Equivalent dynamic bearing load

$$F_a/F_r \le e \rightarrow P = F_r + Y_1 F_a$$
  
 $F_a/F_r > e \rightarrow P = 0,65 F_r + Y_2 F_a$ 

| Principal dimensions |                      | Basic load ratings<br>dynamic static |                            | Fatigue Speed ratings<br>load limit Reference Lin |                               | ings<br>Limiting                     | Mass                                 | Designations<br>Bearing with |                                                  |                                                      |
|----------------------|----------------------|--------------------------------------|----------------------------|---------------------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|------------------------------|--------------------------------------------------|------------------------------------------------------|
| d                    | D                    | В                                    | С                          | Co                                                | Pu                            | speed                                | speed                                |                              | cylindrical bore                                 | tapered bore                                         |
| mm                   |                      |                                      | kN                         |                                                   | kN                            | r/min                                |                                      | kg                           | -                                                |                                                      |
| 35                   | 72<br>72<br>80<br>80 | 17<br>23<br>21<br>31                 | 19<br>30,2<br>26,5<br>39,7 | 6<br>8,8<br>8,5<br>11,2                           | 0.31<br>0.455<br>0.43<br>0.59 | 20 000<br>18 000<br>16 000<br>16 000 | 13 000<br>12 000<br>11 000<br>12 000 | 0,32<br>0,4<br>0,51<br>0,68  | 1207 ETN9<br>2207 ETN9<br>1307 ETN9<br>2307 ETN9 | 1207 EKTN9<br>2207 EKTN9<br>1307 EKTN9<br>2307 EKTN9 |



| Dime | nsions                     |                              |                          | Abutm                  | ent and fil            | llet dimensions          | Calcula                       | tion facto                   | rs                      | 1                        | its Inspic               |
|------|----------------------------|------------------------------|--------------------------|------------------------|------------------------|--------------------------|-------------------------------|------------------------------|-------------------------|--------------------------|--------------------------|
| d    | d <sub>2</sub>             | D1<br>~                      | r <sub>1,2</sub><br>min. | d <sub>a</sub><br>min. | D <sub>a</sub><br>max. | r <sub>a</sub><br>max.   | kr                            | e                            | Y <sub>1</sub>          | Y <sub>2</sub>           | Y <sub>0</sub>           |
| mm   |                            |                              |                          | mm                     |                        | e/esin                   | 491                           |                              | 151                     |                          |                          |
| 35   | 47<br>45,3<br>51,5<br>46,5 | 62,3<br>64,2<br>69,5<br>68,4 | 1,1<br>1,1<br>1,5<br>1,5 | 42<br>42<br>44<br>44   | 65<br>65<br>71<br>71   | 1,1<br>1,1<br>1,5<br>1,5 | 0,04<br>0,045<br>0,04<br>0,05 | 0,23<br>0,31<br>0,25<br>0,46 | 2,7<br>2<br>2,5<br>1,35 | 4,2<br>3,1<br>3,9<br>2,1 | 2,8<br>2,2<br>2,5<br>1,4 |

## Sample problem:

A deep groove ball bearing, SKF 6214, with normal clearance is loaded by a radial load  $F_r =$ 7000 N and an axial load  $F_a = 2000$  N. Calculate the operating life according to SKF's rating life equation for:

a. Sealed bearing

b. Unsealed bearings.

The rotational speed is 1250 rpm. For the unsealed bearing use SKF lubricating grease LGMT 2. The degree of contamination  $\eta_c$  is estimated to 0,2. The operating temperature is estimated to 55°C in both cases.



 $F_r = 7000 N_{\star}$  $F_a = 2000 N_{\star}$ n = 1250 rpm

 $t = 55^{\circ}C$ 

#### Unsealed bearing: use SKF lubricating grease LGMT 2 $\eta_c = 0.2$

#### SKF 6214 (SKF p. 330)

| Princi | ipal dime               | nsions               | Basic la<br>dynami           | oad ratings                | Fatigue<br>load limit        | Speed rati<br>Reference              | ngs<br>Limiting                   | Mass                         | Designation                         |
|--------|-------------------------|----------------------|------------------------------|----------------------------|------------------------------|--------------------------------------|-----------------------------------|------------------------------|-------------------------------------|
| d      | D                       | В                    | С                            | Co                         | Pu                           | speed                                | speed                             |                              |                                     |
| mm     | . *                     |                      | kN                           |                            | kN                           | r/min                                |                                   | kg                           | -                                   |
| 60     | 78<br>85<br>95          | 10<br>13<br>11<br>18 | 11,9<br>16,5<br>20,8<br>30,7 | 11,4<br>14,3<br>15<br>23,2 | 0.49<br>0.6<br>0.735         | 17 000<br>16 000<br>15 000           | 11000<br>10000<br>9500            | 0,11<br>0,2<br>0,29          | 61812<br>61912<br>* 16012           |
|        | 110<br>130<br>150       | 22<br>31<br>35       | 55,3<br>85,2<br>108          | 36<br>52<br>69,5           | 1,53<br>2,2<br>2,9           | 13 000<br>11 000<br>10 000           | 8 000<br>7 000<br>6 300           | 0,41<br>0,78<br>1,7<br>2,85  | * 6212<br>* 6312<br>6412            |
| 65     | 85<br>90<br>100<br>100  | 10<br>13<br>11<br>18 | 12,4<br>17,4<br>22,5<br>31,9 | 12,7<br>16<br>19,6<br>25   | 0,54<br>0,68<br>0,83<br>1,06 | 16 000<br>15 000<br>14 000<br>14 000 | 10 000<br>9 500<br>9 000<br>9 000 | 0,13<br>0,22<br>0,3<br>0,44  | 61813<br>61913<br>* 16013<br>* 6013 |
|        | 120<br>140<br>160       | 23<br>33<br>37       | 58,5<br>97,5<br>119          | 40,5<br>60<br>78           | 1,73<br>2,5<br>3,15          | 12 000<br>10 000<br>9 500            | 7 500<br>6 700<br>6 000           | 1<br>2,1<br>3,35             | * 6213<br>* 6313<br>6413            |
| 70     | 90<br>100<br>110<br>110 | 10<br>16<br>13<br>20 | 12,4<br>23,8<br>29,1<br>39,7 | 13.2<br>21.2<br>25<br>31   | 0,56<br>0,9<br>1,06<br>1,32  | 15 000<br>14 000<br>13 000<br>13 000 | 9 000<br>8 500<br>8 000<br>8 000  | 0,14<br>0,35<br>0,44<br>0,61 | 61814<br>61914<br>* 16014<br>* 6014 |
| -      | 125<br>150<br>180       | 24<br>35<br>42       | 63,7<br>111<br>143           | 45<br>68<br>104            | 1.9<br>2,75<br>3,9           | 11 000<br>9 500<br>8 500             | 7 000<br>6 300<br>5 300           | 1,1<br>2,55<br>4,95          | * 6214<br>- 6314<br>6414            |



C = 63,7 kN  $C_0 = 45 \text{ kN}$   $P_u = 1,9 \text{ kN}$  d = 70 mmD = 125 mm

#### SKF 6214 (SKF p. 331)

| Dimensi | Dimensions     |                |                    |                          | Abutme                 | ent and fillet         | dimensions             | Calculat         | Calculation facto |  |
|---------|----------------|----------------|--------------------|--------------------------|------------------------|------------------------|------------------------|------------------|-------------------|--|
| d       | d <sub>1</sub> | D <sub>1</sub> | D2<br>~            | r <sub>1,2</sub><br>min. | d <sub>a</sub><br>min. | D <sub>a</sub><br>max. | r <sub>a</sub><br>max. | k <sub>r</sub> D | fo                |  |
| mm      |                | -              | eK 1               |                          | mm                     | 198                    |                        | -01              |                   |  |
| 40      | 45.6           | 72 /           |                    | 0.3                      | 62                     | 76                     | 0.3                    | 0.015            | 17                |  |
| 00      | 68.2           | 76.8           |                    | 1                        | 64.6                   | 80.4                   | 1                      | 0.02             | 16                |  |
|         | 72             | 83             |                    | 0.6                      | 63.2                   | 91.8                   | 0.6                    | 0.02             | 14                |  |
|         | 71,3           | 83,7           | 86,5               | 1,1                      | 66                     | 89                     | 1                      | 0,025            | 16                |  |
|         | 75.5           | 94.6           | 98                 | 1.5                      | 69                     | 101                    | 1.5                    | 0,025            | 14                |  |
|         | 81.8           | 108            | 113                | 2.1                      | 72                     | 118                    | 2                      | 0.03             | 13                |  |
|         | 88,1           | 122            | -                  | 2,1                      | 74                     | 136                    | 2                      | 0,035            | 12                |  |
| 65      | 71.6           | 78.4           | -                  | 0.6                      | 68.2                   | 81.8                   | 0,6                    | 0,015            | 17                |  |
|         | 73.2           | 81.8           | 3 <del>-2</del> .0 | 1                        | 69.6                   | 85,4                   | 1 00                   | 0.02             | 17                |  |
|         | 76.5           | 88.4           | -                  | 0.6                      | 68,2                   | 96.8                   | 0,6                    | 0,02             | 16                |  |
|         | 76,3           | 88,7           | 91,5               | 1,1                      | 71                     | 94                     | 1                      | 0,025            | 16                |  |
|         | 83,3           | 103            | 106                | 1,5                      | - 74                   | 111                    | 1,5                    | 0,025            | 15                |  |
|         | 88,3           | 117            | 122                | 2,1                      | 77                     | 128                    | 2                      | 0,03             | 13                |  |
|         | 94             | 131            |                    | 2,1                      | 79                     | 146                    | 2                      | 0,035            | 12                |  |
| 70      | 76.6           | 83,4           | -                  | 0,6                      | 73,2                   | 86,8                   | 0,6                    | 0,015            | 17                |  |
|         | 79.7           | 90.3           | (P.0)              | 1                        | 74.6                   | 95.4                   | 1                      | 0,02             | 16                |  |
|         | 83.3           | 96.8           |                    | 0.6                      | 73,2                   | 106                    | 0,6                    | 0.02             | 16                |  |
|         | 82,8           | 97,2           | 99,9               | 1,1                      | 76                     | 104                    | 1                      | 0,025            | 16                |  |
|         | 87             | 108            | 111                | 1.5                      | 79                     | 116                    | 1,5                    | 0,025            | 15                |  |
|         | 94,9           | 125            | 130                | 2,1                      | 82                     | 138                    | 2                      | 0,03             | 13                |  |
|         | 103            | 146            | -                  | 3                        | 86                     | 164                    | 2,5                    | 0,035            | 12                |  |

 $f_0 = 15$ 

## P = equivalent dynamic bearing load, kN (SKF p. 316)

#### Equivalent dynamic bearing load

 $F_a/F_r \le e \rightarrow P = F_r$  $F_a/F_r > e \rightarrow P = XF_r + YF_a$ 

#### (SKF p. 315, normal clearance)



| Calculati               | alculation factors for deep groove ball bearings |                       |                      |                                     |                      |                                  |                               |  |  |  |  |
|-------------------------|--------------------------------------------------|-----------------------|----------------------|-------------------------------------|----------------------|----------------------------------|-------------------------------|--|--|--|--|
|                         | Single                                           | row and<br>al clearar | double row bearing   | s Single row be<br>C3 clearance     | earings              | C4 clearanc                      | ce allon shin in Faller       |  |  |  |  |
| $f_0 F_a/C_0$           | e                                                | x                     | Y                    | e X                                 | Y                    | e X                              | Y                             |  |  |  |  |
| 0,172<br>0,345<br>0,689 | 0,19<br>0,22<br>0,26                             | 0,56<br>0,56<br>0,56  | 2,3<br>1,99<br>1,71  | 0.29 0.46<br>0.32 0.46<br>0.36 0.46 | 1.88<br>1.71<br>1.52 | 0.38 0.4<br>0.4 0.4<br>0.43 0.4  | 44 1,47<br>44 1,4<br>44 1,3   |  |  |  |  |
| 1,03<br>1,38<br>2,07    | 0,28<br>0,3<br>0,34                              | 0,56<br>0,56<br>0,56  | 1,55<br>1,45<br>1,31 | 0,38 0,46<br>0,4 0,46<br>0,44 0,46  | 1,41<br>1,34<br>1,23 | 0,46 0,4<br>0,47 0,4<br>0,5 0,4  | 44 1,23<br>44 1,19<br>44 1,12 |  |  |  |  |
| 3,45<br>5,17<br>6,89    | 0,38<br>0,42<br>0,44                             | 0,56<br>0,56<br>0,56  | 1,15<br>1,04<br>1    | 0,49 0,44<br>0,54 0,44<br>0,54 0,46 | 1,1<br>1,01<br>1     | 0,55 0,4<br>0,56 0,4<br>0,56 0,4 | 1,02<br>44<br>44<br>1         |  |  |  |  |

 $e \approx 0,26$ X = 0,56

Y = 1.71

#### $f_0 F_a/C_0 = 15 \ge 2000/45000 \approx 0.67 \implies$

**Rolling-Element Bearings** 

Table 8

$$F_a/F_r = 2000/7000 = 0,29$$

e ≈ 0,26





#### P = 7340 N = 7,34 kN

 $F_a/F_r > e \Longrightarrow P = XF_r + YF_a =$ 

 $0,56 \cdot 7000 + 1,71 \cdot 2000 = 7340 \text{ N}$ 

 $a_{SKF} = SKF$  life modification factor (diagram 1-4, SKF p. 66-69)

But first, we have to follow some steps:

Step 1: required kinematic Viscosity  $v_1$ 

(Diagram 5,SKF p.72)

$$d_{m} = (d+D)/2 = (70 + 125)/2$$
  
or  $d_{m} = 97,5 \text{ mm}$   
 $n = 1250 \text{ rpm}$   
 $\begin{cases} \Rightarrow v_{1} \approx 11 \text{ mm}^{2}/\text{s} \end{cases}$ 



Step 2: Actual viscosity

ISO-Oils (Diagram 6, SKF p.73)





Step 2: Actual viscosity SKF greases – LGMT 2 (Table 4, SKF p.250)

| Desig-<br>nation | Description                                          | Tempera-<br>ture | Speed  | Load     | NLGI<br>class | Tempera<br>range <sup>1)</sup><br>LTL | i <b>ture</b><br>HTPL | Base oil<br>viscosity at<br>40 °C<br>(105 °F) | 100 °C<br>(210 °E) |
|------------------|------------------------------------------------------|------------------|--------|----------|---------------|---------------------------------------|-----------------------|-----------------------------------------------|--------------------|
| - 1349           | t <del>e</del> des states and and                    | C-Brit Da        | -      | _1110624 |               | °C/°F                                 |                       | mm²/s                                         | (                  |
| LGMT 2           | General purpose,<br>industrial and automotive        | М                | м      | L to M   | 2             | -30<br>-20                            | 120<br>250            | 110                                           | 11                 |
| LGMT 3           | General purpose,<br>industrial and automotive        | М                | М      | L to M   | 3             | -30<br>-20                            | 120<br>250            | 120                                           | 12                 |
| LGEP 2           | Extreme pressure,<br>heavy load                      | М                | L to M | Н        | 2             | -20<br>-5                             | 110<br>230            | 200                                           | 16                 |
| LGWA 2           | Wide temperature <sup>3)</sup> ,<br>extreme pressure | M to H           | L to M | L to H   | 2.            | -30<br>-20                            | 140<br>285            | 185                                           | 15                 |
| LGFP 2           | Food compatible                                      | М                | м      | L to M   | 2             | -20<br>-5                             | 110<br>230            | 130                                           | 7,3                |



#### Viscosity at 40°C for LGMT 2 is 110 mm<sup>2</sup>/s Viscosity at 100°C for LGMT 2 is 110 mm<sup>2</sup>/s

SKF greases - technical specifications and characteristics

#### Diagram with logarithmic scale on y-axis



 $v \approx 60 \text{ mm}^2/\text{s}$  (at 55°C, operating temperature).

Step 3:

#### Viscosity ratio $\kappa = \nu/\nu_1 \approx 60/11 \approx 5,4$



Step 4: to find factor η<sub>c</sub> for different levels of contaminations (Table 4, SKF p. 74)

a. Sealed bearing

 $d_m = 97,5 \sim 100 \text{ mm}$ 

 $\eta_{c} = 0,8$ 

#### Guideline values for factor ne for different levels of contamination

| Conditions                                                                                                                                                                                 | Factor n <sub>c</sub> <sup>1)</sup><br>for bearings with me<br>d <sub>m</sub> < 100 mm | an diameter<br>d <sub>m</sub> ≥ 100 mm |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|
| Extreme cleanliness <ul> <li>particle size approximately the same as the lubricant film thickness</li> <li>laboratory conditions</li> </ul>                                                | 1                                                                                      | 1                                      |
| <b>High cleanliness</b><br>oil filtered through an extremely fine filter<br>typical conditions: sealed bearings that are greased for life                                                  | 0,8 0,6                                                                                | 0,9 0,8                                |
| Normal cleanliness<br>oil fill ered through a fine filter<br>typical conditions: shielded bearings that are greased for life                                                               | 0,6 0,5                                                                                | 0,8 0,6                                |
| bight contamination<br>typical conditions: bearings without integral seals, coarse filtering,<br>wear particles and slight ingress of contaminants                                         | 0,5 0,3                                                                                | 0,6 0,4                                |
| ypical contamination<br>conditions typical of bearings without integral seals,<br>coarse filtering, wear particles and ingress from surroundings                                           | 0,3 0,1                                                                                | 0,4 0,2                                |
| evere contamination<br>typical conditions: high levels of contamination due to excessive wear<br>and/or ineffective seals<br>bearing arrangement with ineffective or damaged seals         | 0,10                                                                                   | 0,1 0                                  |
| <b>ery severe contamination</b><br>typical conditions: contamination levels so severe that values of η <sub>c</sub> are<br>outside the scale, which significantly reduces the bearing life | 0                                                                                      | 0                                      |
|                                                                                                                                                                                            |                                                                                        |                                        |

Step 5: to find $a_{SKF}$ (Diagram 1, SKF p. 66)

 $\eta_{\rm c}(P_{\rm u}/P) = 0.8(1900/7340) \approx 0.21$ 

 $\kappa = 5,4$  use  $\kappa = 4$ 

 $\Rightarrow a_{\rm SKF} \approx 50$ 



#### SKF rating life

$$L_{naah} = a_1 \cdot a_{SKF} \frac{1000000}{60 \cdot n} \left(\frac{C}{P}\right)^p$$

 $a_1 = 1$  (no info. about the reliability) p = 3 (ball bearing)



$$L_{10mh} = 50 \frac{1000000}{60.1250} \left(\frac{63.7}{7.34}\right)^3 \approx 435752 \text{hours}$$





#### b. Unsealed bearing

Viscosity ratio  $\kappa = 5, 4 \approx 4$ 

Degree of contamination is given:  $\eta_c = 0,2$ 

 $\eta_{\rm c}(P_{\rm u}/P) = 0.2 \ (1900/7340) = 0.052$ 

 $\Rightarrow a_{SKF} \approx 3$ 

$$L_{10mh} = 3 \frac{1000000}{60 \cdot 1250} \left(\frac{63,7}{7,34}\right)^3 \approx 26145 \text{ hours}$$



## Tolerances required for mounting and running of the bearings



#### SKF p. 172-173. Selection of tolerance classes for shafts where bearings will be mounted SKF



|                                                                                                         |                                                                                                                                 |                                                             |                                                                                                                                                                                                |                                                                |                                                                                                                                                                                                     | Table 2                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fits for solid steel sl<br>Radial bearings wit                                                          | hafts<br>h cylindrical bore                                                                                                     |                                                             |                                                                                                                                                                                                |                                                                |                                                                                                                                                                                                     |                                                                                                                                                                                             |
| Conditions                                                                                              | Examples                                                                                                                        | Shaft diameter<br>Ball<br>bearings <sup>1)</sup>            | <b>r, mm</b><br>Cylindrical<br>roller<br>bearings                                                                                                                                              | Tapered<br>roller<br>bearings                                  | CARB and spherical roller bearings                                                                                                                                                                  | Tolerance class                                                                                                                                                                             |
| Rotating inner ring<br>Light and<br>variable loads<br>( $P \le 0.05$ C)                                 | load or direction of lo<br>Conveyors, lightly<br>loaded gearbox<br>bearings                                                     | ad indeterminat<br>≤ 17<br>(17) to 100<br>(100) to 140<br>- | te<br>≤ 25<br>(25) to 60<br>(60) to 140                                                                                                                                                        | -<br>≤ 25<br>(25) to 60<br>(60) to 140                         | - (                                                                                                                                                                                                 | js5 (h5) <sup>2)</sup><br>j6 (j5) <sup>2)</sup><br>k6<br>m6                                                                                                                                 |
| Normal to<br>heavy loads<br>(P > 0,05 C)                                                                | Bearing applications<br>generally,<br>electric motors,<br>turbines, pumps,<br>gearing, wood-<br>working machines,<br>wind mills | $\leq 10$<br>(10) to 17<br>(17) to 100<br>                  | $\begin{array}{c} - \\ - \\ - \\ 30 \\ (30) \text{ to } 50 \\ - \\ (50) \text{ to } 65 \\ (65) \text{ to } 100 \\ (100) \text{ to } 280 \\ - \\ (280) \text{ to } 500 \\ - \\ 500 \end{array}$ |                                                                | $\frac{-}{<25}$ $\frac{-}{25 \text{ to } 40}$ $\frac{-}{(40) \text{ to } 60}$ $\frac{-}{(60) \text{ to } 100}$ $\frac{-}{(100) \text{ to } 200}$ $\frac{-}{(200) \text{ to } 500}$ $\frac{-}{>500}$ | js5<br>j5 (js5) <sup>2)</sup><br>k5 <sup>3)</sup><br>k6<br>m5<br>m6<br>n5 <sup>4)</sup><br>n6 <sup>4)</sup><br>p6 <sup>5)</sup><br>p7 <sup>4)</sup><br>r6 <sup>4)</sup><br>r7 <sup>4)</sup> |
| Heavy to very<br>heavy loads and<br>shock loads<br>with difficult<br>working conditions<br>(P > 0, 1 C) | Axleboxes for heavy<br>railway vehicles,<br>traction motors,<br>rolling mills                                                   |                                                             | (50) to 65<br>(65) to 85<br>(85) to 140<br>(140) to 300<br>(300) to 500<br>> 500                                                                                                               | -<br>(50) to 110<br>(110) to 200<br>(200) to 500<br>-<br>> 500 | (50) to 70<br>-<br>(70) to 140<br>(140) to 280<br>(280) to 400<br>> 400                                                                                                                             | n5 <sup>4)</sup><br>n6 <sup>4)</sup><br>p6 <sup>6)</sup><br>r6 <sup>7)</sup><br>s6 <sub>min</sub> ± IT6/2 <sup>6)8)</sup><br>s7 <sub>min</sub> ± IT7/2 <sup>6)8)</sup>                      |
| High demands on running accuracy with light loads $(P \le 0.05 \text{ C})$                              | Machine tools                                                                                                                   | 8 to 240<br><br><br>                                        | -<br>25 to 40<br>(40) to 140<br>(140) to 200<br>(200) to 500                                                                                                                                   | -<br>25 to 40<br>(40) to 140<br>(140) to 200<br>(200) to 500   | 1                                                                                                                                                                                                   | js4<br>js4 (j5) <sup>9)</sup><br>k4 (k5) <sup>9)</sup><br>m5<br>n5                                                                                                                          |



#### SKF table 11, p. 202 Geometrical tolerances (form tolerances).



#### International Tolerance Grades or IT Grades

| Basmått<br>mm                |                              |                   | 146               | 1000                 | 9.44                 | 650                  |                      | 110                  | an-a                   | 1940                     |                          | Tolera                   | nsvidd                   |                            | an's                       | 0000                      | AT EQ                    | VELN                | enpas                    | 1608                     | ENGRY                  |
|------------------------------|------------------------------|-------------------|-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|----------------------------|---------------------------|--------------------------|---------------------|--------------------------|--------------------------|------------------------|
|                              |                              |                   |                   |                      |                      |                      |                      |                      |                        |                          |                          |                          |                          |                            | mm                         |                           |                          |                     |                          |                          |                        |
| över                         | t.o.m.                       | IT01              | ITO               | IT1                  | IT2                  | IT3                  | IT4                  | IT5                  | IT6                    | IT7                      | IT8                      | IT9                      | IT10                     | IT11                       | IT12                       | IT13                      | IT14                     | IT15                | IT16                     | IT17                     | IT18                   |
| 1<br>3                       | 1<br>3<br>6                  | 0.3<br>0.3<br>0.4 | 0.5<br>0.5<br>0.6 | 0,8<br>0,8<br>1      | 1,2<br>1,2<br>1,5    | 2<br>2<br>2,5        | 3<br>3<br>4          | 4<br>4<br>5          | 6<br>6<br>8            | 10<br>10<br>12           | 14<br>14<br>18           | 25<br>25<br>30           | 40<br>40<br>48           | 60<br>60<br>75             | 0,1<br>0,1<br>0,12         | 0,14<br>0,14<br>0,18      | 0,25<br>0,3              | 0,4<br>0,48         | 0,6<br>0,75              | 1<br>1,2                 | 1,4<br>1,8             |
| 6<br>10<br>18                | 10<br>18<br>30               | 0.4<br>0.5<br>0.6 | 0.6<br>0.8<br>1   | 1<br>1,2<br>1,5      | 1,5<br>2<br>2,5      | 2,5<br>3<br>4        | 4<br>5<br>6          | 6<br>8<br>9          | 9<br>11<br>13          | 15<br>18<br>21           | 22<br>27<br>33           | 36<br>43<br>52           | 58<br>70<br>84           | 90<br>110<br>130           | 0,15<br>0,18<br>0,21       | 0,22<br>0,27<br>0,33      | 0,36<br>0,43<br>0,52     | 0,58<br>0,7<br>0,84 | 0,9<br>1,1<br>1,3        | 1,5<br>1,8<br>2,1        | 2,2<br>2,7<br>3,3      |
| 30<br>50<br>80               | 50<br>80<br>120              | 0,6<br>0,8<br>1   | 1<br>1,2<br>1,5   | 1.5<br>2<br>2,5      | 2,5<br>3<br>4        | 4<br>5<br>6          | 7<br>8<br>10         | 11<br>13<br>15       | 16<br>19<br>22         | 25<br>30<br>35           | 39<br>46<br>54           | 62<br>74<br>87           | 100<br>120<br>140        | 160<br>190<br>220          | 0,25<br>0,3<br>0,35        | 0,39<br>0,46<br>0,54      | 0,62<br>0,74<br>0,87     | 1<br>1,2<br>1,4     | 1,6<br>1,9<br>2,2        | 2,5<br>3<br>3,5          | 3,9<br>4,6<br>5,4      |
| 120<br>180<br>250            | 180<br>250<br>315            | 1,2<br>2<br>2,5   | 2<br>3<br>4       | 3.5<br>4.5<br>6      | 5<br>7<br>8          | 8<br>10<br>12        | 12<br>14<br>16       | 18<br>20<br>23       | 25<br>29<br>32         | 40<br>46<br>52           | 63<br>72<br>81           | 100<br>115<br>130        | 160<br>185<br>210        | 250<br>290<br>320          | 0,4<br>0,46<br>0,52        | 0,63<br>0,72<br>0,81      | 1<br>1,15<br>1,3         | 1,6<br>1,85<br>2,1  | 2,5<br>2,9<br>3,2        | 4<br>4,6<br>5,2          | 6,3<br>7,2<br>8,1      |
| 315<br>400<br>500            | 400<br>500<br>630            | 3<br>4            | 5<br>6            | 7<br>8<br>9          | 9<br>10<br>11        | 13<br>15<br>16       | 18<br>20<br>22       | 25<br>27<br>32       | 36<br>40<br>44         | 57<br>63<br>70           | 89<br>97<br>110          | 140<br>155<br>175        | 230<br>250<br>280        | 360<br>400<br>440          | 0,57<br>0,63<br>0,7        | 0,89<br>0,97<br>1,1       | 1,4<br>1,55<br>1,75      | 2,3<br>2,5<br>2,8   | 3,6<br>4<br>4,4          | 5,7<br>6,3<br>7          | 8,9<br>9,7<br>11       |
| 630<br>800<br>1000           | 800<br>1000<br>1250          | (m)               | s an              | 10<br>11<br>13       | 13<br>15<br>18       | 18<br>21<br>24       | 25<br>28<br>33       | 36<br>40<br>47       | 50<br>56<br>66         | 80<br>90<br>105          | 125<br>140<br>165        | 200<br>230<br>260        | 320<br>360<br>420        | 500<br>560<br>660          | 0,8<br>0,9<br>1,05         | 1,25<br>1,4<br>1,65       | 2<br>2,3<br>2,6          | 3,2<br>3,6<br>4,2   | 5<br>5,6<br>6,6          | 8<br>9<br>10,5           | 12,5<br>14<br>16,5     |
| 1250<br>1600<br>2000<br>2500 | 1600<br>2000<br>2500<br>3150 | Y, X<br>Sili (    | V.C<br>neb        | 15<br>18<br>22<br>26 | 21<br>25<br>30<br>36 | 29<br>35<br>41<br>50 | 39<br>46<br>55<br>68 | 55<br>65<br>78<br>96 | 78<br>92<br>110<br>135 | 125<br>150<br>175<br>210 | 195<br>230<br>280<br>330 | 310<br>370<br>440<br>540 | 500<br>600<br>700<br>860 | 780<br>920<br>1100<br>1350 | 1,25<br>1,5<br>1,75<br>2,1 | 1,95<br>2,3<br>2,8<br>3,3 | 3,1<br>3,7<br>4,4<br>5,4 | 5<br>6<br>7<br>8,6  | 7,8<br>9,2<br>11<br>13,5 | 12,5<br>15<br>17,5<br>21 | 19,5<br>23<br>28<br>33 |

#### **Run-outs**

Radial

![](_page_46_Picture_2.jpeg)

![](_page_46_Picture_3.jpeg)

![](_page_46_Picture_4.jpeg)

![](_page_46_Picture_5.jpeg)

![](_page_46_Picture_6.jpeg)

![](_page_46_Picture_7.jpeg)

![](_page_46_Picture_8.jpeg)

## **Total run-outs**

• Total radial

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

![](_page_47_Picture_4.jpeg)

• Total axial

![](_page_47_Picture_6.jpeg)

![](_page_47_Figure_7.jpeg)

![](_page_47_Picture_8.jpeg)

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

![](_page_48_Picture_2.jpeg)